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This whitepaper presents a brief overview of the cur-
rent status of what is known about adiabatic quan-
tum computation and quantum annealing in theoreti-
cal computer science.

Quantum Terminology

Note that no standard terminology exists for some
of the formal concepts described here, and that these
terms have multiple meanings in the quantum comput-
ing literature.

Adiabatic Quantum Computing (AQC) refers to a
general model of computation based on Hamiltonians
that apply quantum operators simultaneously to large
groups of qubits. This model, analogous to a Turing
machine, is used in computability theory to describe
what functions can be computed, and in complexity
theory to characterize abstract machines and problems.

Quantum Annealing (QA) (sometimes called stoquastic
AQC [2]) here refers to a specific instantiation of AQC,
analogous to the random-access machine (RAM) com-
monly used in algorithm analysis. This model captures
essential properties of real-world quantum processing
units (QPUs) manufactured by D-Wave.

QA implements a transverse-field Ising model (IM) algo-
rithm in hardware. The algorithm H has four compo-
nents: an initial Hamiltonian HI operating in the x basis
(the transverse field); a final Hamiltonian HF operating
in the z basis (the Ising model instance); a transition
function f (t) : 0→ ta that gradually moves H from HI
to HF; and an anneal time ta.

The final Hamiltonian HF describes instances for the
IM problem (defined on spin values {−1,+1}), which
is arithmetically equivalent to the quadratic uncon-
strained binary optimization (QUBO) problem (defined
on binaries {0, 1}). Specifically, HF represents the ob-
jective function of instance I in such a way that the
eigenvectors and eigenvalues of the Hamiltonian ex-
actly match the solutions and costs of the instance. The
qubits are driven by H to find ground and low-energy
states of HF, which correspond to optimal and near-
optimal solutions to I .

Because the known bounds on computation time for
H are intractable to compute [2], and do not apply
to noisy open-system computations, we normally con-
sider real-world annealing QPUs to operate as heuris-
tics rather than algorithms. Here, however, we focus on
abstract algorithmic properties.

Computability Theory

Computability theory considers the fundamental limits
of what can be computed by machines, or equivalently,
what computations can be expressed in a given formal
notation system. It is widely believed that no model of
computation is more powerful than a Turing machine
in terms of what can be computed.

A model that can express and solve any Turing-
computable function is called Turing complete. If it is
Turing complete and fully programmable—for exam-
ple if it contains a universal circuit, a logic circuit that
can be programmed to simulate any other logic circuit,
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up to a given size limit—then it is a universal Turing ma-
chine (UTM). See Bun [4] for details.

Note that a standalone universal circuit is not a com-
puter: it has no memory to preserve state, and it always
halts, whereas Turing-complete models must be capa-
ble of performing infinite computations. Instead, the
term quantum computer refers to a quantum arithmetic-
logic unit (ALU) together with classical components
that provide control, memory, and input/output func-
tionality.

Both AQC and QA are UTMs. The proof for QA is
straightforward: it suffices to show that the quantum
ALU can compute any classical logic function up to a
fixed size. Many sources show how to formulate logic
circuits L as a QUBO inputs Q, in such a way that an
optimal solution to Q is a correct output to L. See, e.g.,
Pakin [7] for details.

Many people misuse the term “universal quantum
computer” to distinguish between gate-model quan-
tum computing (GM) and QA. However, the two
models—having different quantum architectures—are
equivalent according to the standard definition of a
universal computer.

Complexity Theory

Computational complexity theory classifies problems
according to hardness, and machine models according
to power, based on the computational resources (time
and space) needed by a given model to solve a given
problem.

A primary proof technique in this field is to show
that one model of computation A can simulate another
model B, using only polynomially-more resources: if
so, A is at least as powerful as B. If each model can sim-
ulate the other with at most polynomial overhead, the
two are said to be polynomially equivalent. Many open
questions revolve around the difficulty of showing that
A is more powerful than B, which requires a proof that
it is not possible for B to efficiently simulate A.

In this context, the following properties have been
proven:

• Aharanov et al. [1] show that AQC is polynomially
equivalent to GM. Both are at least as powerful as a
UTM , but whether a UTM can efficiently simulate

GM and AQC has not been proven. Thus, the ques-
tion of polynomial equivalence between quantum
and classical models is open.

• AQC has not been proven more powerful than
QA (stoquastic AQC). Biamonte and Love [3] de-
scribe modifications to H that are sufficient—but
not proven necessary—to demonstrate polynomial
equivalence. Thus the question remains open.

• Quantum speedup is a proof that a quantum algo-
rithm can solve a specific problem in a way that
cannot be simulated efficiently by any classical
algorithm. Quantum speedup for stoquastic and
nonstoquastic AQC has been demonstrated using
the glued trees problem; see Gilyén et al. [5].

Quantum speedup has a very different mean-
ing in empirical research. Note that finite experi-
ments (including recent demonstrations of empiri-
cal quantum supremacy using a real-world anneal-
ing QPU [6]) cannot be used to settle open ques-
tions from complexity theory.
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